СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ РАЗМЕЩЕНИЯ ЦЕНТРОВ АККУМУЛЯЦИИ РЕСУРСОВ

Косенко О.В., к.т.н., доцент ИРТСУ, Бойко М.В., магистрант, ИРТСУ ЮФУ, г. Таганрог, Россия

Аннотация. В работе проводится анализ методов решения задачи оптимального размещения центров аккумуляции ресурсов (ЦАР) логистических цепях. Рассмотрены ключевые подходы, включая методы кластеризации, модели минимизации затрат, а также более комплексные учитывающие спрос и экологические факторы. В результате установлен принципиальный сравнительного анализа недостаток существующих методик – их ориентация на детерминированную постановку задачи. Обоснована необходимость разработки нового подхода, позволяющего определять зону рационального размещения ЦАР в условиях неопределенности исходных данных, прежде всего, статистического спроса.

Ключевые слова: логистика, размещение распределительных центров, центр аккумуляции ресурсов (ЦАР), оптимизация затрат, метод центра тяжести, кластеризация.

В логистических системах доставка ресурсов от производителя к конечному пользователю организуется по одной из схем: напрямую («производитель – потребитель») или через промежуточное звено («производитель – центр аккумуляции ресурсов – потребитель»)[6]. Второй вариант, предполагающий использование распределительных центров, требует применения сложных многоэтапных моделей, где ключевым критерием эффективности чаще всего выступает минимизация совокупных логистических расходов [1].

Задача поиска оптимального расположения таких центров аккумуляции ресурсов (ЦАР) является базовой в теории логистики. Её суть заключается в определении местоположения объектов, при котором заданная целевая функция, как правило, отражающая общие издержки, достигает своего минимума. На итоговое решение влияет комплекс факторов – не только классические параметры, такие как расстояние перевозок, объемы грузов и транспортные тарифы, наличие транспортной инфраструктуры, НО И экологические и правовые нормы, налоговые условия, а также капитальные затраты на строительство новых объектов.

С математической точки зрения, задача может решаться как поиск строго оптимального, так и субоптимального (рационального) решения[5]. Для этого разработан ряд аналитических и эвристических подходов. Например, в научной литературе широко исследуются методы кластеризации, где ЦАР рассматриваются как центры групп (кластеров). Один из таких алгоритмов, предложенный Мак Квином, предполагает случайный выбор начальных центров с последующим итеративным присвоением объектов к ближайшему центру и их объединением при соблюдении заданных пороговых расстояний, минимизируя внутригрупповую сумму квадратов отклонений [8].

В работах Сток и Ламберт, а также фон Танена и Вебера, критериальная функция поставленной задачи определена как минимизация затрат.В модели Гувера учитывается не только спрос, но и затраты. Данный подход позволяет отойти от принципа линейной зависимости тарифа от расстояния. Дальнейшее развитие идеи получили у Гринхарта, который добавил в экологическую составляющую, сместив цель на максимизацию общей прибыли[7]. Ряд современных методов предлагает различные решения. Так, подходов предполагает расчет интегральных показателей один привлекательности регионов на основе консолидированных факторов спроса. Другой, геометрический метод, рекомендует размещать ЦАР в пересечения окружностей, проведенных из мест расположения поставщиков с радиусом, ограниченным допустимыми задержками поставок[3,4].

Широко известна комбинаторная модель, использующая принцип «центра тяжести». Её алгоритм включает [2]:

- 1. Определение множества потенциальных точек для размещения ЦАР.
- 2. Расчет транспортных издержек по формуле:

$$L = \sum_{i=1}^{n} Q_{i}^{(n)} T_{i} R_{i} + \sum_{i=1}^{n} Q_{j}^{(\kappa)} T_{j} r_{i} \to min$$

где n — количество поставщиков; m — количество потребителей ресурса; $F_i^{(n)}$ — объем поставки от поставщика i в ЦАР; $Q^{(k)}_{\ j}$ — объем поставки из распределительного центра потребителю j; T_i , T_j — тарифы на транспортировку; R_i — расстояние от поставщика i до распределительного центра; r_j — расстояние от распределительного центра до потребителя j.

3. Определение координат склада по формулам взвешенного среднего, учитывающим координаты и объемы грузов поставщиков и потребителей:

$$x_{k} = \frac{\sum_{i=1}^{n} \frac{Q_{i}^{(n)} T_{i} x_{i}}{R_{i} T_{i}} + \sum_{j=1}^{m} \frac{Q_{j}^{(\kappa)} T_{j} x_{j}}{r_{j} T_{j}}}{\sum_{i=1}^{n} \frac{Q_{i}^{(n)} T_{i}}{R_{i} T_{i}} + \sum_{j=1}^{m} \frac{Q_{j}^{(\kappa)} T_{j}}{r_{j} T_{j}}}, \qquad y_{k} = \frac{\sum_{i=1}^{n} \frac{Q_{i}^{(n)} T_{i} y_{i}}{R_{i} T_{i}} + \sum_{j=1}^{m} \frac{Q_{j}^{(\kappa)} T_{j} y_{j}}{r_{j} T_{j}}}{\sum_{i=1}^{n} \frac{Q_{i}^{(n)} T_{i}}{R_{i} T_{i}} + \sum_{j=1}^{m} \frac{Q_{j}^{(\kappa)} T_{j} y_{j}}{r_{j} T_{j}}},$$

где x_i , y_i — координаты поставщика i; x_j , y_j — координаты потребителя j; x_k , y_k — координаты распределительного центра.

4. Перебор всех возможных вариантов привязки потребителей к центрам для выбора варианта с минимальными затратами.

В отличие от метода «центра тяжести», метод расчета рейтинга участка позволяет учесть качественные факторы через их попарное сравнение и определение весов, что дает более комплексную оценку.

Анализ рассмотренных методов, представленный в таблице 1, выявляет их общий существенный недостаток — они оперируют детерминированными (точно известными) данными. Однако в реальности параметры, особенно спрос, носят вероятностный и неопределенный характер. Это обуславливает актуальность разработки новых методов, которые позволяли бы определять не

точку, а целую область рационального размещения ЦАР, учитывая стохастическую природу исходных параметров задачи.

Таблица 1 – Анализ методов рационального размещения промежуточных

центров.

	Параметры оценки метода		
	Возможность	Решение задачи	Учет
Название метода/	определения	группирования в	параметров
автор метода	нескольких	недетерминированной	спроса при
	центров	постановке	выборе центра
	группирования		группирования
Метод Мак Квина	+	-	_
Метод Вон Танена	_	_	+
и Вебера			
Метод Гувера	_	-	+
Метод		_	+
Копыловой О.А			
Метод	+	_	+
Константинова Р.В.			

Проведенный анализ позволяет сделать вывод что задача оптимального размещения центров аккумуляции ресурсов носит сложный многокритериальный характер, зависящий от широкого спектра факторов, далеко выходящих за рамки минимизации транспортных расходов.

Литература

- 1. Габасов, Р. Ф. Методы линейного программирования. Ч. 2: Транспортные задачи / Р. Ф. Габасов, Ф. М. Кириллова. Москва: Либроком, 2010. 240 с.
- 2. Константинов, Р. В. Проектирование оптимальной складской сети [Электронный ресурс] / Р. В. Константинов // Инженерный вестник Дона. 2011. Т. 18, № 4. URL: http://cyberleninka.ru/article/n/proektirovanie-optimalnoy-skladskoy-seti (дата обращения: 15.10.2023).

- 3. Копылова, О. А. Методика выбора мест размещения транспортно-логистических центров / О. А. Копылова // Актуальные проблемы современной науки, техники и образования : материалы 69-й научно-технической конференции, Магнитогорск, 2011 г.: в 2 т. Магнитогорск : Изд-во Магнитогорск. гос. техн. ун-та им. Г.И. Носова, 2011. Т. 1. С. 13–16.
- 4. Косенко, Е. Е. Алгоритм определения принадлежности объекта к промежуточному центру распределения ресурсов в условиях неопределенности / Е. Е. Косенко // Перспективные системы и задачи управления : материалы XVIII Всероссийской научно-практической конференции и XIV молодежной школы-семинара, Таганрог, 2023 г. Таганрог, 2023. С. 659–666.
- 5. Логистика: учебник для студентов учреждений среднего профессионального образования / В. П. Мельников, А. Г. Схиртладзе, А. К. Антонюк; под общей редакцией В. П. Мельникова. Москва: Юрайт, 2015. 287 с.
- 6. Майоров, Н. Н. Моделирование транспортных процессов / Н. Н. Майоров, В. А. Фетисов. Санкт-Петербург: ГУАП, 2011. 165 с.
- 7. Сток, Д. Р. Стратегическое управление логистикой / Д. Р. Сток, Д. М. Ламберт. Москва: ИНФРА-М, 2005. 830 с.
- 8. Mac Queen, J. Some methods for classification and analysis of multivariate observations / J. Mac Queen // Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967. P. 281–297.